Enhanced oral absorption and therapeutic effect of acetylpuerarin based on D-α-tocopheryl polyethylene glycol 1000 succinate nanoemulsions

نویسندگان

  • Deqing Sun
  • Xinbing Wei
  • Xia Xue
  • Zengjun Fang
  • Manru Ren
  • Haiyan Lou
  • Xiumei Zhang
چکیده

BACKGROUND Acetylpuerarin (AP), because of its lower water solubility, shows poor absorption that hinders its therapeutic application. Thus, the aim of this study was to prepare nanoemulsions for AP, enhance its oral bioavailability, and thus improve the therapeutic effect. METHODS The nanoemulsions stabilized by D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were prepared by high-pressure homogenization and characterized in terms of particle size, drug loading, morphology, and in vitro drug release. A lipid digestion model was used to predict in vivo drug solubilization in the gastrointestinal environment. The pharmacokinetics of AP formulations were performed in rats; meanwhile, a chylomicron flow-blocking rat model was used to evaluate the lymphatic drug transport. Moreover, the therapeutic effects of AP nanoemulsions on the model of focal cerebral ischemia-reperfusion for brain injury were also assessed. RESULTS The nanoemulsions with a droplet size of 150 nm were well stabilized by TPGS and showed a high loading capacity for AP. In the digestion model, the distribution of AP in aqueous phase/pellet phase was about 90%/10% for nanoemulsions and 5%/95% for oil solution, indicating that the drug encapsulated in nanoemulsions would present in solubilized form after transportation into the gastrointestinal tract, whereas drug precipitation would occur as the oil solution was orally administered. The area under the curve value of AP nanoemulsions was 5.76±0.56 μg·hour·mL(-1), or was about 2.6 and 1.7 times as great as that of suspension and oil solution, respectively, indicating enhanced drug absorption and thus achieving a better neuroprotection effect on cerebral ischemic reperfusion injury. The values of peak plasma concentration and area under the curve from the blocking model were significantly less than those of the control model, suggesting that the lymphatic transport performed a very important role in absorption enhancement. CONCLUSION Enhanced oral bioavailability in nanoemulsions was achieved via the mechanism of the maintenance of drug solubilization in the gastrointestinal tract and the enhancement of lymphatic transport, which resulted in therapeutic improvement of cerebral ischemic reperfusion injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of a gelatin microparticle-containing self-microemulsifying formulation for enhanced oral bioavailability of dutasteride

In this study, a gelatin microparticle-containing self-microemulsifying formulation (SMF) was developed using a spray-drying method to enhance the oral delivery of the poorly water-soluble therapeutic dutasteride. The effect of the amount of gelatin and the type and amount of hydrophilic additives, namely, Gelucire(®) 44/14, poloxamer 407, sodium lauryl sulfate, Soluplus(®), Solutol™ HS15, and ...

متن کامل

Redox-responsive F127-folate/F127-disulfide bond-d-α-tocopheryl polyethylene glycol 1000 succinate/P123 mixed micelles loaded with paclitaxel for the reversal of multidrug resistance in tumors

Introduction The development of nanodrug carriers utilizing tumor microenvironment has become a hotspot in reversing multidrug resistance (MDR). Materials and methods This study synthesized a redox-sensitive copolymer, Pluronic F127-disulfide bond-d-α-tocopheryl polyethylene glycol 1000 succinate (FSST), through the connection of the reduction-sensitive disulfide bond between F127 and d-α-toc...

متن کامل

Characterization, in Vivo and in Vitro Evaluation of Solid Dispersion of Curcumin Containing d-α-Tocopheryl Polyethylene Glycol 1000 Succinate and Mannitol.

The aim of this study was to prepare a solid dispersion formulation of curcumin to enhance its solubility, dissolution rate, and oral bioavailability. The formulation was prepared with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and mannitol using solvent evaporation and freeze-drying methods, which yielded a solid dispersion composed of curcumin, TPGS, and mannitol at a ratio of 1...

متن کامل

Design of vitamin E d-α-Tocopheryl Polyethylene Glycol 1000 Succinate-Emulsified Poly (D,L–Lactide–co-Glycolide) Nanoparticles: Influence of Duration of Ultrasonication Energy

The aim of this research was to investigate the effect of the duration of ultrasonication energy on the physicochemical characteristics of the nano-sized particulate drug delivery systems. For this purpose, meloxicam-loaded vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS)-emulsified poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles were designed by using ultrasonication-sol...

متن کامل

Ascorbyl palmitate/d-α-tocopheryl polyethylene glycol 1000 succinate monoester mixed micelles for prolonged circulation and targeted delivery of compound K for antilung cancer therapy in vitro and in vivo

The roles of ginsenoside compound K (CK) in inhibiting tumor have been widely recognized in recent years. However, low water solubility and significant P-gp efflux have restricted its application. In this study, CK ascorbyl palmitate (AP)/d-α-tocopheryl polyethylene glycol 1000 succinate monoester (TPGS) mixed micelles were prepared as a delivery system to increase the absorption and targeted a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014